

Multimodal learning of emotions

- Ex1: Input modalities (video):
 - Visuals form video (sequence of images)
 - Speech (how are things said)
 - Text (speech-to-text; what is being said)
 - Motion capture data (not included here)
- Ex2: Input modalities (wearable):
 - 3-axis accelerometer (movement)
 - Photoplethysmography (PPG) sensor (heart rate, blood volume pulse)
 - Electrodermal activity (EDA) sensor (sweat)
 - Temperature sensor.

Emotions

- Labels
 - Often categorical: Happy, sad, neutral, angry, disgust, etc.
 - Also: 2-dimensional, continuous constructs, like valence, arousal, etc.

IEMOCAP dataset (Busso et al., 2008)- *Interactive Emotional Dyadic Motion Capture*

- Dyadic interactions between pairs of actors engaged in scripted dialogues and improvised scenarios
- 12 hours of interactions in five dyadic sessions, providing around 10,000 emotion-labeled utterances
- Categorical emotion labels (happy, sad, angry, neutral, disgust, fear, surprise) and dimensional attributes (valence, arousal, and dominance).
- Multiple evaluators, USC students
- 76% of utterances has 3 different evaluators, otherwise 4

Plutchik's wheel of emotions (Robert Plutchik American Psychologist, Professor), 8 primary emotions, 1980

Wang et al, A systematic review on affective computing: emotion models, databases, and recent advances, 2022

Pre-trained emotion recognition models

Modality	Architecture	Model
Text	Transformer (DistilRoBERTa)	emotion-english-distilroberta-base; Hartmann [2022]
Audio	Transformer (Wav2Vec2)	w2v-speech-emotion-recognition; Khoa [2024]
Facial	CNN + LSTM (ResNet50 + LSTM)	EMO-AffectNetModel; Ryumina et al. [2022]

Agreement Rate (intersection over union for two raters)

• The proportion of utterances in which both evaluators independently labeled that same emotion

Agreement rates between modalities

Collaborators: Anders Rolighed Larsen, Sneha Das, Paula Petcu, Nicole N Lønfeldt (in submission)

Examples of ambiguity

ID	Multimodal Information	Video frame	CEAs	VADs
Ses01F_script01_3_M010	Text: "Am I embarrassing you?		Fear	val 5; act 5;
	Are you - See, I didn't want to do it	-	Excited	val 4; act 4;
	here with this yard, on this porch. I wanted it to be somewhere new, some place fresh for both of us." Image: Smiling Audio: Rising intonation		Neutral	val 4; act 3;
Ses02M_script03_1_M026	Text: "Horrible thing, I hated it."		Excited	val 3; act 3
	Image: Small smile	6	Disgust	val 3; act 4
	Audio: Falling intonation		Anger	
Ses04F_script01_3_F026	Text: "And do you still feel that way?"		Sadness	val 3; act 2;
	Image: Neutral		Excited	val 2; act 3;
	Audio: Rising intonation		Neutral	

One: Improving prediction accuracy (IEMOCAP)

Hosseini, S.S., Yamaghani, M.R. & Poorzaker Arabani, S. Multimodal modelling of human emotion using sound, image and text fusion. *SIViP* **18**, 71–79 (2024)

A&T	Angry	Нарру	Neutral	Sad	
(A) Confus	(A) Confusion matrix of audio and video fusion				
Angry	74.92	3.58	3.83	16.81	
Нарру	1.92	73.25	2.08	22.03	
Neutral	2.81	2.51	80.85	13.39	
Sad	2.41	9.62	6.68	80.82	

A&V	Angry	Нарру	Neutral	Sad	
(B) Confu	(B) Confusion matrix of audio and text fusion				
Angry	71.89	2.02	11.55	14.17	
Нарру	4.73	77.92	2.74	14.29	
Neutral	4.48	2.22	80.93	12.05	
Sad	2.91	9.87	12.16	74.62	

T&A&V	Angry	Нарру	NEUTRAL	Sad
(C) Confusion matrix of text, audio, and video fusion				
Angry	79.62	1.26	2.1	16.51
Нарру	1.62	82.8	0.3	14.9
Neutral	4.07	1.48	80.94	13.22
Sad	1.91	9.81	7.03	80.88

Two: Information in ambiguity?

- Think of applications where we can use differing predictions per modality to take actions
 - In an AI chatbot ask a follow up question
 - In explainable AI concepts like sarcasm could perhaps be revealed
 - Cultural differences maybe different actions need to be taken in varying cultural circumstances

Recognition: Building Blocks, Current State, Applications, and Challenges, IEEE Access, 2024

13

Basic fusion strategies

Review Fusion

Fusion technique	Suitable Modalities	Strengths	Limitations	Techniques
Early Fusion (EF)	Ideal for combining low- level features directly extracted from different modalities.	Captures detailed information from each modality early in the processing pipeline, allowing for comprehensive feature integration.	Can result in very high-dimensional feature vectors, leading to increased computational complexity and potential overfitting. Also, it might not handle missing or noisy data effectively.	Feature Concatenation, Shared Representation Learning, Tensor Fusion, Attentive Fusion.
Late Fusion (LF)	Best when each modality can be processed indepen- dently with separate classi- fiers.	Enables integration of decision outputs or confidence scores from individual classifiers trained on different modalities.	May miss out on capturing inter- actions between modalities since the integration occurs at a decision level. Performance depends heavily on the quality of individual classi- fiers.	Maximum Voting, Linear Weighting, D-S Evidence Theory.
Mid-level Fusion	Effective for integrating higher-level, semantically rich representations extracted from individual modalities.	Combines abstract features that capture deeper relationships between modalities.	Still can be computationally intensive and might require significant preprocessing to extract meaningful high-level features.	Extracts and combines fea- tures after initial process- ing stages to enhance inter- pretability and integration.
Hybrid Fusion	Combines multiple fusion techniques to leverage complementary strengths across different modalities.	Provides flexibility and robustness by integrating both low-level and high-level features effectively.	Complex to implement and optimize, potentially requiring more resources and sophisticated architectures.	Using EF for low-level fea- ture integration and mid- level fusion for abstract representation integration.
Feature-level Fusion	Suitable when direct integration of raw or processed features is beneficial.	Facilitates comprehensive utilization of multimodal features at a fundamental level.	High-dimensional vectors can lead to increased computational cost and overfitting. Difficulty in handling missing data.	Feature concatenation, averaging, or applying more complex operations to merge the information from each modality.
Decision-level Fusion	Works well when each modality can provide an independent assessment of emotions.	Simplifies the fusion process by dealing with classifier outputs rather than raw features.	May lose nuanced interactions be- tween modalities and rely heav- ily on individual classifier perfor- mance.	Voting schemes (average, majority vote), weighted averaging, or stacking to enhance decision-making.
Attention-based Fusion	Dynamically weights the contribution of different modalities based on their relevance to the task.	Effective for scenarios where modalities vary in importance or relevance over time or context.	Flexibility in focusing on informative parts while mitigating noise or irrelevant information.	Can be computationally intensive and requires careful tuning of attention mechanisms.
Graph-based Fusion	Uses GNNs to model relationships and interactions between modalities.	Beneficial when capturing complex dependencies and interactions between fea- tures from different modal- ities.	Enhances robustness and accuracy by integrating structured relation- ships in multimodal data.	Computationally expensive and requires expertise in GNNs. The performance can be sensitive to the graph structure and parameters.
Transformers for Multimodal Fusion	Utilizes transformer architectures to capture long- range dependencies and interactions across text, au- dio, and visual modalities.	Effective for integrating information across diverse and complex modalities.	Improves accuracy in capturing nuanced interactions and dependencies between modalities.	Very high computational requirements and complex architecture that requires large datasets and significant computational resources.

Kalateh et al, A Systematic Review on Multimodal Emotion Recognition: Building Blocks, Current State, Applications, and Challenges, IEEE Access, 2024

Modalities

FIGURE 16. Radar graph of emotion recognition modalities evaluation based on the selected criteria.

Kalateh et al, A
Systematic Review on
Multimodal Emotion
Recognition: Building
Blocks, Current State,
Applications, and
Challenges, IEEE
Access, 2024

Applications in Psychiatry

Behavioral coding

Applications

- Fidelity
- Therapy processess
- Parent & child behavior

Limitations

- Time-consuming
- Expensive
- Bias

OpenFace (Baltrusaitis et al., 2018)

Gaze & Facial action units

Facial Action Coding System (FACS) (www.paul.Ekman.com)

Facial Emotion Recognition (FER)

Python package fer (Zhang et al., 2016; Arriaga et al., 2017)

angry: 0.00

disgust:0.00

fear:0.00

happy:0.98

sad:0.00

surprise:0.00

neutral:0.02

Motion Energy Analysis (MEA)

Interpretability by design

(Inspired by Concept bottleneck, Koh et al 2020)

Pre-trained machine learning Symbolic AI Models/Algorithms Feldman, 1998 **CIB** items **Outputs** Gaze angles OpenFace Action units Gaze **Angry** Vocalization Disgust Fear Combination Positive affect Facial Expression Recognition outputs (%) Нарру (FER) Video data **Negative emotionality** Neutral Sad **Activity-level/arousal Surprise Anxiety** BackgroundSubtractorMOG **Attention** YOLOv5 **Motion heatmap** K-means

Data:

30-sec of mania & 30-sec of depression chapters of K-SADS screening videos. OCD = 50 videos, no-OCD = 24 videos.

Frumosu, Lønfeldt NN., Mora-Jensen., Das, S., Lund., Pagsberg, Clemmensen: Workshop on Interpretable ML in Healthcare at International Conference on Machine Learning (ICML), 2022.

Comparison to experts

Percent agreement (%) =
$$\frac{\text{number agreements}}{\text{total number items}} \times 100$$

Table 1. Average percent agreement over the videos

Comparison	Percentage agreement
Rater 1 vs. Rater 2	83%
ML vs. Rater 1	66%
ML vs. Rater 2	76%

Table 2. Average percentage agreement over the videos. Dropped CIB items: gaze and vocalization

Comparison	Percent agreement
Rater 1 vs. Rater 2	87%
ML vs. Rater 1	79%
ML vs. Rater 2	85%

Wearables – Predicting OCD events from biosignals

WristAngel - A Wearable AI Feedback Tool for OCD Treatment and Research NNF Exploratory Synergy Grant

Summarizing

9 participants (Five girls, four boys)

- Ages of 10 and 16 years (mean age = 12.3, SD = 2.6)
- Diagnosed with OCD (F42.2 according to the International Statistical Classification of Diseases and Related Health Problems Organization, 1993)
- At enrolment, OCD severity scores were from mild to moderate severe (mean= 24.56, SD = 5.12).
- The Empatica E4 wristband measures:
 - Heart rate (HR),
 - Blood volume pulse (BVP),
 - External skin temperature (TEMP), and
 - Electrodermal activity (EDA).

Pre-processing

Figure S1. Recording from a wristband containing both a period of identified sleep and periods when the wristband was not worn. Red lines denote tagged OCD events.

Sampling events and non-events

Feature extraction

- We did quite a lot of this...
- Blood Volume Presssure (BVP)
 - Assess **noise** using skewness and kurtosis for windowed signals (5s)
 - Identify systolic peaks using the NeuroKit2
 - Extract: Average inter-beat interval and root mean square of successive differences (RMSSD) for low-noise windows.
 - Time-domain features: mean, standard deviation (SD), median, minimum, maximum, and slope.
 - Frequency-domain features: mean, SD, median, interquartile range, minimum, maximum, and sum of frequencies.
 - The frequency-domain features were split into real and imaginary components. All features were averaged across the low noise segments within each five-minute window for the final set of features.
 - Finally, we included the minimum and maximum slopes for a low-noise segment as features.

Feature extraction

- Heart rate (HR)
 - Calculated directly in the E4 using a proprietary algorithm.
 - Five minute windows: mean, SD, minimum, 25% quantile, median, 75% quantile, maximum, interquartile range, and slope.
- Skin temperature
 - Pre-processed using a sixth-order Butterworth low-pass filter with a cut-off frequency of 1Hz.
 - Five minute windows: mean, standard deviation, minimum, maximum, and slope.

Feature extraction

Electrodermal Activity (EDA)

- Pre-processed using a sixth-order Butterworth low-pass filter with a cut-off frequency of 1Hz, Normalized to [0, 1].
- The normalized signal was decomposed into its **tonic** and **phasic** parts using the **NeuroKit2**.
- Five minute windows: mean, standard deviation, minimum, maximum, and slope.
- Tonic component, 5 min windows: minimum, 25% quantile, median, 75% quantile, maximum, interguartile range, and slope.
- Phasic components: mean, standard deviation, number of peaks, average peak amplitude, average response time, and power in the frequency bands ultralow frequency (ULF: 0.01-0.04) Hz), low frequency (LF: 0.04-0.15 Hz), high frequency (HF:198 0.15-0.4 Hz), and ultra-high frequency (UHF: 0.4-1.0 Hz).
- From the **unnormalized signal**: mean, standard deviation, minimum, 25% quantile, median, 75% quantile, maximum, interquartile range, and power in the frequency bands above.

Methods

- Machine Learning models:
 - Logistic regression (LR),
 - Random forest (RF),
 - Feedforward neural networks (NN)
 - Mixed-Effect Random Forest (MERF)

- Cross-validation procedure:
 - 10-fold random CV
 - Generalized partipant based: leave-one-subject-out CV
 - Temporal generalized: leave-12.5%-days out val-test sets
 - Personalized: train and test on one person.

Olesen, K. V., Lønfeldt, N. N., Das, S., Pagsberg, A. K., and Clemmensen, L. K. H. (2023). Feasibility of predicting obsessive-compulsive disorder events in children and adolescents from biosignals in-the-wild - a wrist angel analysis plan. JMIR Preprints 48571 doi:10.2196/preprints.48571532

Predicting OCD events from biosignals

ROC validation, best possible (random CV) & across time

Figure 3a. Random cross-validation.

Figure 3b. Temporal cross-validation.

Multimodal learning using a foundation model (TimesFM)

- TimesFM, a newly proposed transformer, foundation model, for time series.
- $F1_5min = 0.31$

- Das, Abhimanyu, Weihao Kong, Rajat Sen, et al. (2024). A decoder-only foundation model for time-series forecasting. arXiv: 2310.10688 [cs.CL]. URL: https://arxiv.org/abs/2310.10688
- Collaboration: Harald Skat-Rørdam, Kathrine Sofie Rasmussen, Sneha Das

Thank You – Keep Learning

