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Multimodal learning of emotions

• Ex1: Input modalities (video):

• Visuals form video (sequence of images)

• Speech (how are things said) 

• Text (speech-to-text; what is being said)

• Motion capture data (not included here)

• Ex2: Input modalities (wearable):

• 3-axis accelerometer (movement)

• Photoplethysmography (PPG) sensor (heart rate, blood volume pulse)

• Electrodermal activity (EDA) sensor (sweat)

• Temperature sensor.
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Emotions

• Labels

• Often categorical: Happy, sad, neutral, angry, disgust, etc.

• Also: 2-dimensional, continuous constructs, like valence, arousal, etc.
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J. A. Russell. A circumplex model of affect.
Journal of personality and social psychology, 39
(6):1161, 1980



IEMOCAP dataset (Busso et al., 2008)- Interactive Emotional 
Dyadic Motion Capture

• Dyadic interactions between pairs of actors engaged in scripted dialogues 
and improvised scenarios

•  12 hours of interactions in five dyadic sessions, providing around 10,000 
emotion-labeled utterances

• Categorical emotion labels (happy, sad, angry, neutral, disgust, fear,  
surprise) and dimensional attributes (valence, arousal, and dominance).

• Multiple evaluators, USC students

• 76% of utterances has 3 different evaluators, otherwise 4
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Plutchik’s wheel of emotions (Robert Plutchik American 
Psychologist, Professor), 8 primary emotions, 1980
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Wang et al, A systematic review on 
affective computing: emotion models, 
databases, and recent advances, 2022



Pre-trained emotion recognition models

Modality Architecture Model

Text Transformer (DistilRoBERTa) emotion-english-distilroberta-base; Hartmann [2022]

Audio Transformer (Wav2Vec2) w2v-speech-emotion-recognition; Khoa [2024]

Facial CNN + LSTM (ResNet50 + LSTM) EMO-AffectNetModel; Ryumina et al. [2022]
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Agreement Rate (intersection over union for two raters)

• The proportion of utterances in which both evaluators independently 
labeled that same emotion 

• Agreement_i = 
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Agreement rates between modalities

29/08/2025 8

Collaborators: Anders Rolighed Larsen, Sneha Das, Paula Petcu, 
Nicole N Lønfeldt (in submission)



Examples of ambiguity
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Highlight words in headline using bold   
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What would you recommend now 
that we established the modalities 
(to some extend) give different 
predictions?
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One: Improving prediction accuracy (IEMOCAP)
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Hosseini, S.S., Yamaghani, M.R. & Poorzaker 
Arabani, S. Multimodal modelling of human 
emotion using sound, image and text 
fusion. SIViP 18, 71–79 (2024)



Two: Information in ambiguity?

• Think of applications where we can use differing predictions per modality 
to take actions

• In an AI chatbot – ask a follow up question

• In explainable AI – concepts like sarcasm could perhaps be revealed

• Cultural differences – maybe different actions need to be taken in varying cultural 
circumstances
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Kalateh et al, A 
Systematic Review on 
Multimodal Emotion
Recognition: Building 
Blocks, Current State,
Applications, and 
Challenges, IEEE 
Access, 2024



Basic fusion strategies
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Review
Fusion
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Kalateh et al, A 
Systematic Review on 
Multimodal Emotion
Recognition: Building 
Blocks, Current State,
Applications, and 
Challenges, IEEE 
Access, 2024



Modalities
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Kalateh et al, A 
Systematic Review on 
Multimodal Emotion
Recognition: Building 
Blocks, Current State,
Applications, and 
Challenges, IEEE 
Access, 2024



Applications in Psychiatry
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Behavioral coding

Applications
• Fidelity
• Therapy processess
• Parent & child behavior

Limitations
• Time-consuming
• Expensive
• Bias



OpenFace (Baltrusaitis et al., 2018)

• Gaze & Facial action units

Facial Emotion Recognition (FER)

Motion Energy Analysis (MEA)

Python package fer (Zhang et al., 2016; Arriaga et al., 2017)

angry: 0.00

disgust:0.00

fear:0.00

happy:0.98

sad:0.00

surprise:0.00

neutral:0.02

Facial Action Coding System (FACS)
(www.paul.Ekman.com)
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angry: 0.00

disgust:0.00

fear:0.00

happy:0.98

sad:0.00

surprise:0.00

neutral:0.02

Frumosu, Lønfeldt NN., Mora-Jensen., Das, S., Lund., Pagsberg, Clemmensen: Workshop on 
Interpretable ML in Healthcare at International Conference on Machine Learning (ICML), 2022.

Pre-trained machine learning Symbolic AI

Data:

30-sec of mania & 30-sec of depression 
chapters of K-SADS screening videos. OCD = 
50 videos, no-OCD = 24 videos.

Feldman, 1998

Interpretability by design      (Inspired by Concept bottleneck, Koh et al 2020)



Comparison to experts
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Wearables – Predicting OCD events from 
biosignals
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Lab visit

Week 8

Wear biosensor daily
Tag OCD/anxiety events

Week 4Week 0 Week 7

Start End

Parent 
questionnaires

Biosensor
questionnaire

WristAngel - A Wearable AI Feedback Tool for 
OCD Treatment and Research 

Lab visit

In-the-wild
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Npt = 9 + 9
Nct = 9 + 9

NNF Exploratory Synergy Grant
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9 participants (Five girls, four boys)
• Ages of 10 and 16 years (mean age = 12.3, SD = 2.6)

• Diagnosed with OCD (F42.2 according to the International Statistical 

Classification of Diseases and Related Health Problems Organization, 1993) 

• At enrolment, OCD severity scores were from mild to moderate severe (mean= 

24.56, SD = 5.12).

• The Empatica E4 wristband measures:

• Heart rate (HR), 

• Blood volume pulse (BVP), 

• External skin temperature (TEMP), and 

• Electrodermal activity (EDA). 

Summarizing data:
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Pre-processing



Sampling events and non-events
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Feature extraction

• We did quite a lot of this...

• Blood Volume Presssure (BVP)
• Assess noise using skewness and kurtosis for windowed signals (5s)

• Identify systolic peaks using the NeuroKit2

• Extract: Average inter-beat interval and root mean square of successive differences (RMSSD) 

for low-noise windows.

• Time-domain features: mean, standard deviation (SD), median, minimum, maximum, and 

slope.

• Frequency-domain features: mean, SD, median, interquartile range, minimum, maximum, and 
sum of frequencies. 

• The frequency-domain features were split into real and imaginary components. All features 

were averaged across the low noise segments within each five-minute window for the final set 
of features. 

• Finally, we included the minimum and maximum slopes for a low-noise segment as features.
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Feature extraction

• Heart rate (HR)

• Calculated directly in the E4 using a proprietary algorithm.

• Five minute windows: mean, SD, minimum, 25% quantile, median, 75% quantile, 

maximum, interquartile range, and slope.

• Skin temperature

• Pre-processed using a sixth-order Butterworth low-pass filter with a cut-off frequency 

of 1Hz. 

• Five minute windows: mean, standard deviation, minimum, maximum, and slope.
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Feature extraction

• Electrodermal Activity (EDA)
• Pre-processed using a sixth-order Butterworth low-pass filter with a cut-off frequency of 1Hz, 

Normalized to [0, 1].

• The normalized signal was decomposed into its tonic and phasic parts using the NeuroKit2. 

• Five minute windows: mean, standard deviation, minimum, maximum, and slope.

• Tonic component, 5 min windows: minimum, 25% quantile, median, 75% quantile, maximum, 
interquartile range, and slope.

• Phasic components: mean, standard deviation, number of peaks, average peak amplitude, 

average response time, and power in the frequency bands ultralow frequency (ULF: 0.01-0.04 
Hz), low frequency (LF: 0.04-0.15 Hz), high frequency (HF:198 0.15-0.4 Hz), and ultra-high 

frequency (UHF: 0.4-1.0 Hz). 

• From the unnormalized signal: mean, standard deviation, minimum, 25% quantile, median, 
75% quantile, maximum, interquartile range, and power in the frequency bands above.
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Methods
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• Machine Learning models:
• Logistic regression (LR), 

• Random forest (RF), 

• Feedforward neural networks (NN)

• Mixed-Effect Random Forest (MERF)

• Cross-validation procedure:
• 10-fold random CV

• Generalized partipant based: leave-one-subject-out CV

• Temporal generalized: leave-12.5%-days out val-test sets

• Personalized: train and test on one person.

Olesen, K. V., Lønfeldt, N. N., Das, S., Pagsberg, A. K., and Clemmensen, L. K. H. (2023). Feasibility of predicting obsessive-compulsive disorder 
events in children and adolescents from biosignals in-the-wild - a wrist angel analysis plan. JMIR Preprints 48571 doi:10.2196/preprints.48571532
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ROC validation, best possible (random CV) & across time

Predicting OCD events from biosignals

Lønfeldt, Olesen, Das, Mora-Jensen, Pagsberg, 
Clemmensen, Front. Psychiatry 2023.



Multimodal learning using a foundation model (TimesFM)

• TimesFM, a newly proposed 
transformer, foundation model, 
for time series. 

• F1_5min = 0.31

• Das, Abhimanyu, Weihao Kong, Rajat Sen, et al. (2024). A 
decoder-only foundation model for time-series 
forecasting. arXiv: 2310.10688 [cs.CL]. URL: 
https://arxiv.org/abs/2310.10688

• Collaboration: Harald Skat-Rørdam, Kathrine Sofie 
Rasmussen, Sneha Das
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https://arxiv.org/abs/2310.10688
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Thank You – Keep 
Learning
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