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Isn’t the world Euclidean?
 Euclidean Geometry is the ”default” space for most settings

 Vast majority of Neural Networks are implemented in Euclidean Geometry

 However, our domain knowledge / data is not Euclidean. It is hierarichal!

 But Euclidean Spaces don’t embed hiearchies/tree graphs nicely

Leaf nodes should be far apart
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What does Non-Euclidean Geometry look like?
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Contrastive Learning is Hyperspherical Learning
 Contrastive Learning is often applied by measuring cosine similarity of unit vectors

 All embeddings lie on a unit hypersphere

Understanding Contrastive Representation Learning through Alignment and Uniformity on the Hypersphere Wang and Isola,, 2022
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Constant 0 curvature
Exactly one set of parallel lines

Constant positive curvature
No sets of parallel lines

Constant negative curvature
Infinite sets of parallel lines

Hyperbolic Representation Learning for Computer Vision, ECCV 2022 Tutorial
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 The Poincaré disk model
 Conformal to Euclidean space
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How do we represent Hyperbolic spaces?
 There are several options! 

 The two most commonly used are:

 The Poincaré disk model

 The Hyperboloid / Lorentzian model
 Embeds a d-dimensional Euclidean space into a d+1 hyperbolic space
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Distance: Measure how far two points and are from each other in hyperbolic space.

Hyperbolic Representation Learning for Computer Vision, ECCV 2022 Tutorial, Slide 20
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Poincaré Lorentz

exp𝑥𝑥𝜅𝜅 𝑣𝑣 = cosh 𝜅𝜅 𝑣𝑣 𝐿𝐿 𝑥𝑥 +
sinh 𝜅𝜅 𝑣𝑣 𝐿𝐿

𝜅𝜅 𝑣𝑣 𝐿𝐿

𝑣𝑣exp𝑥𝑥𝜅𝜅 𝑣𝑣 = 𝑥𝑥 ⊕𝜅𝜅 tanh(
𝜅𝜅 | 𝑣𝑣 |

1 − 𝜅𝜅| 𝑥𝑥 |2
)

𝑣𝑣
𝜅𝜅 | 𝑣𝑣 |
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Key concepts of Hyperbolic Geometry
Distance: Measure how far two points and are from each other in hyperbolic space.

Geodesic arc: The shortest (=distance-minimizing) curve from x to y.

Geodesic: A geodesic arc, extended as far as possible.

Exponential map: From a point x follow a geodesic in direction v, at speed r.

This is done by mapping a tangent space vector, v, onto the manifold at point x, with unit speed. 

This is how you map from Euclidean spaces to Hyperbolic space!

Hyperbolic Representation Learning for Computer Vision, ECCV 2022 Tutorial, Slide 20
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So what has been done?
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Hyperbolic Action Recognition

Searching for Actions on the Hyperbole, Long et al., 2020
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Hyperbolic Image Segmentations
 Key insight: The closer a Poincaré embedding norm is to 1, the more certain the prediction is

Hyperbolic Image Segmentation, GhadimiAtigh et al., 2022
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 Key insight: The closer a Poincaré embedding norm is to 1, the more certain the prediction is

Hyperbolic Image Segmentation, GhadimiAtigh et al., 2022
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Hyperbolic Image-Text Embeddings

Hyperbolic Image-Text Representations, Desai et al., 2023
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 Proposes a CLIP style setup in Hyperbolic space

 Uses the Lorentzian space due to numerical instabilities in Poincaré space
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Hyperbolic Image-Text Embeddings
 Proposes a CLIP style setup in Hyperbolic space

 Uses the Lorentzian space due to numerical instabilities in Poincaré space

 Two losses: Contrastive and Entailment loss

Hyperbolic Image-Text Representations, Desai et al., 2023
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Contrastive Loss
 Standard contrastive loss (like in CLIP)

 However, uses Lorentzian distance instead of cosine similarity

Hyperbolic Image-Text Representations, Desai et al., 2023
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Contrastive Loss
 Standard contrastive loss (like in CLIP)

 However, uses Lorentzian distance instead of cosine similarity

 Lorentzian inner product: 𝑥𝑥,𝑦𝑦 𝐿𝐿 = 𝑥𝑥 ∘ 𝑦𝑦 = 𝑥𝑥0𝑦𝑦0 − (𝑥𝑥1𝑦𝑦1 + ⋯+ 𝑥𝑥𝑑𝑑𝑦𝑦𝑑𝑑

 Lorentzian distance: 𝑑𝑑𝐿𝐿 𝑥𝑥, 𝑦𝑦 = 1
𝑐𝑐

cosh−1(𝑐𝑐 𝑥𝑥,𝑦𝑦 𝐿𝐿)

Hyperbolic Image-Text Representations, Desai et al., 2023
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Contrastive Loss
 Standard contrastive loss (like in CLIP)

 However, uses Lorentzian distance instead of cosine similarity

 Lorentzian inner product: 𝑥𝑥,𝑦𝑦 𝐿𝐿 = 𝑥𝑥 ∘ 𝑦𝑦 = 𝑥𝑥0𝑦𝑦0 − (𝑥𝑥1𝑦𝑦1 + ⋯+ 𝑥𝑥𝑑𝑑𝑦𝑦𝑑𝑑

 Lorentzian distance: 𝑑𝑑𝐿𝐿 𝑥𝑥, 𝑦𝑦 = 1
𝑐𝑐

cosh−1(𝑐𝑐 𝑥𝑥,𝑦𝑦 𝐿𝐿)

Minimize distance for positive pairs
Maximize distance for negative pairs

Hyperbolic Image-Text Representations, Desai et al., 2023
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Entailment Loss
 Key concept: Fine-grained concepts should be embedded deeper into the space

Hyperbolic Image-Text Representations, Desai et al., 2023
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Entailment Loss
 Key concept: Fine-grained concepts should be embedded deeper into the space

 Enforced by making sure the fine-grained concept is within the entailment cone of a parent concept

Angle between parent and child nodes

Hyperbolic Image-Text Representations, Desai et al., 2023
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Entailment Loss
 Key concept: Fine-grained concepts should be embedded deeper into the space

 Enforced by making sure the fine-grained concept is within the entailment cone of a parent concept

Angle between parent and child nodes

Entailment cone of parent node

Hyperbolic Image-Text Representations, Desai et al., 2023
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Entailment Loss Effect

Hyperbolic Image-Text Representations, Desai et al., 2023
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Entailment Loss Effect

Hyperbolic Image-Text Representations, Desai et al., 2023
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Stacked 
Entailment Loss
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How is this used for Taxonomic Classification?
 Assume paired multi-modal data, with expert textual labels

 The textual labels contains the full hierarchy!

Diptera Psychodidae Psychoda Psychoda grisescens
Order Family Genus Species
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Stacked Entailment Loss
 Core ideas: 
1. Enforce entailment loss between consecutive taxonomic ranks
2. Also apply a negative entailment loss
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Postive and Negative Entailment loss:
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Postive and Negative Entailment loss:
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Inter- and Intra-modal Entailment Losses
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Inter- and Intra-modal Entailment Losses
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BIOSCAN-1M Results Summary
 Across all ranks Hypebolic models match or outperform Euclidean CLIBD

 SEL methods consistently perform best at unseen DNA retrieval

 But Euclidean CLIBD is better at image retrieval tasks

 This is still ongoing research, so we hope to further improve results within the coming months
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