The Maersk Mc-Kinney Moller Institute

Beyond Euclidean -
Hyperbolic Representation
Learning

Joakim Bruslund Haurum
Assistant Professor
Center for Software Technology - SDU Vejle

SDU+



The Maersk Mc-Kinney Moller Institute

Isn’t the world Euclidean?

SDU&

AP nps

Npnps#



The Maersk Mc-Kinney Moller Institute

Isn’t the world Euclidean?

- Euclidean Geometry is the "default” space for most settings

- Vast majority of Neural Networks are implemented in Euclidean Geometry

SDU&

AP nps

Npnps#



The Maersk Mc-Kinney Moller Institute

Isn’t the world Euclidean?

- Euclidean Geometry is the "default” space for most settings
—> Vast majority of Neural Networks are implemented in Euclidean Geometry

- However, our domain knowledge / data is not Euclidean. It is hierarichal!
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- But Euclidean Spaces don’'t embed hiearchies/tree graphs nicely
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Euclid’s postulates
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Euclid’s postulates

To draw a straight line from any point to any point.

To describe a circle with any centre and distance (radius).
That all right angles are equal to one another.
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Euclid’s postulates

To draw a straight line from any point to any point.

To produce (extend) a finite straight line continuously in a straight line.
To describe a circle with any centre and distance (radius).

That all right angles are equal to one another.

ok~ 0bh =

That, if a straight line falling on two straight lines makes the interior angles on the same side less than two

right angles, the two straight lines, if produced indefinitely, meet on that side on which the angles are less
than two right angles.

What if this is not true?
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Euclidean

Constant O curvature
Exactly one set of parallel lines
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Euclidean

Constant O curvature
Exactly one set of parallel lines
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Spherical

Constant positive curvature
No sets of parallel lines
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Contrastive Learning is Hyperspherical Learning

- Contrastive Learning is often applied by measuring cosine similarity of unit vectors

- All embeddings lie on a unit hypersphere
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Euclidean

Constant O curvature
Exactly one set of parallel lines

S D U A Hyperbolic Representation Learning for Computer Vision, ECCV 2022 Tutorial

Spherical

Constant positive curvature
No sets of parallel lines

Hyperbolic

Constant negative curvature
Infinite sets of parallel lines
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But why is Hyperbolic Geometry interesting?
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How do we represent Hyperbolic spaces?

- There are several options!
- The two most commonly used are:

- The Poincaré disk model
- Conformal to Euclidean space
- Restricted to a unit disc

Ddz{pERd:p%—l—---
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How do we represent Hyperbolic spaces?

- There are several options!
- The two most commonly used are:
- The Poincaré disk model

- The Hyperboloid / Lorentzian model
- Embeds a d-dimensional Euclidean space into a d+1 hyperbolic space

Hd={$€Rd+l:33(2)—($%+"'+£C3):1,330>0}
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Key concepts of Hyperbolic Geometry

Distance: Measure how far two points and are from each other in hyperbolic space.
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Key concepts of Hyperbolic Geometry

Geodesic arc: The shortest (=distance-minimizing) curve from x to y.

Geodesic: A geodesic arc, extended as far as possible.
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Key concepts of Hyperbolic Geometry

Exponential map: From a point x follow a geodesic in direction v, at speed r.

This is done by mapping a tangent space vector, v, onto the manifold at point x, with unit speed.

Poincaré Lorentz

expX(v) = x P, <tanh(1 VeIl 7 )

_ K||x||2) NAT expx(v) = cosh(\/E||v||L)x+
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Key concepts of Hyperbolic Geometry

Exponential map: From a point x follow a geodesic in direction v, at speed r.

This is done by mapping a tangent space vector, v, onto the manifold at point x, with unit speed.

This is how you map from Euclidean spaces to Hyperbolic space!
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So what has been done?
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Hyperbolic Action Recognition

Hyperbolic action embedding
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Hyperbolic Action Recognition

Hyperbolic action embedding
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Hyperbolic Action Recognition

Hyperbolic action embedding
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- Key insight: The closer a Poincaré embedding norm is to 1, the more certain the prediction is
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Hyperbolic Image Segmentations

- Key insight: The closer a Poincaré embedding norm is to 1, the more certain the prediction is
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Hyperbolic Image Segmentations

- Key insight: The closer a Poincaré embedding norm is to 1, the more certain the prediction is
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Hyperbolic Image-Text Embeddings
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Hyperbolic Image-Text Representations, Desai et al., 2023

Hyperbolic Image-Text Representations

Karan Desai' Maximilian Nickel? Tanmay Rajpurchit® Justin Johnson'? Ramakrishna Vedantam*

Abstract

Visual and linguistic concepts naturally organize
themselves in a hierarchy, where a textual con

cept “dog” entails all images that contain dogs.
Despite being intuitive, current large-scale vision
and language models such as CLIP (Radford et al.,
2021} do not explicitly capture such hierarchy. We
propose MERU, a contrastive model that yields
hyperbolic representations of images and text. Hy

perbolic spaces have suitable geometric proper-

ties to embed tree-like data, so MERU can better
capture the underlying hierarchy in image-text
datasets. Our results show that MERU leamns a
highly interpretable and structured representation
space while being competitive with CLIP"s perfor.

mance on standard multi-modal tasks like image
classification and image-text retrieval. Our code
and models are available at: https://github.
com/facebookresearch/meru

1. Introduction

Visual-semantic hierarchy. It is commonly said that ‘an
image is worth a th d words’ ly, images

contain a lot more information than the sentences which
typically describe them. For example, given the middle
image in Figure | one might describe it as ‘a cat and a dog
playing in the street’ or with a less specific sentence like
‘exhausted doggo” or ‘so cute <3". These are not merely di
verse descriptions but contain varying levels of detail about
the underlying semantic contents of the image.

As humans, we can reason about the relative detail in each
caption, and can organize such concepts into a meaningful
visual-semantic hierarchy (Vendrov et al., 2016), namely,
‘exhausted dogge® — “a car and a dog playing in the street”
— (Figure | middle image). Providing multimodal mod
els access to this inductive bias about vision and language
has the potential to improve generalization (Radford et al.,

KD and Rama did this work while at Meta. mversity of
Mich *Meta Al *Independent R her *New York Univer-
sity. Correspondence to: Karan Desai <kdexd@umich. edu=.

Proceedings of the 0" International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).
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Figure I. Hyperbolic image-text representations. Left: Im-
ages and text depict concepis and can be joinily viewed in a
visual-semantic hierarchy, wherein text ‘exhausted doggo’ is more
generic than an image (which might have more details like a cat or
snow). Our method MERU embeds images and text in a hyperbolic
space that is well-suited to embed tree-like data. Right: Represen-
tation manifolds of CLIP (hypersphere) and MERU (hyperboloid)
illustrated in 3D. MERU assumes the origin to represent the meost
generic concep, and embeds ext closer o the o images.

2021), interpretability (Selvaraju et al., 2017) and enable
better exploratory data analysis of large-scale datasets (Rad
ford et al., 2021; Schuhmann et al., 2022).

Vision-1 repr ion learning. Approaches
such as CLIP (Radford et al., 2021) and ALIGN (Jia et al.,
2021) have catalyzed a lot of recent progress in computer
vision by showing that Transformer-based (Vaswani et al.,
2017) models trained using large amounts of image-text
data from the internet can yield transferable representations,
and such models can perform zero-shot recognition and
retrieval using natural language queries. All these models
represent images and text as vectors in a high-dimensional
Euclidean, affine space and normalize the embeddings to
unit .* norm. However, such a choice of geometry can find
it hard to capture the visual-semantic hierarchy.

An affine Euclidean space treats all embedded points in
the same manner, with the same distance metric being ap
plied to all points (Murphy, 2013). Conceptually, this can
cause issues when modeling hierarchies - a generic concept
(closer to the roat node of the hierarchy) is close to many
other concepts compared to a specific concept (which is only
close to its immediate neighbors). Thus, a Euclidean space
can find it hard to pack all the images that say a generic
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Hyperbolic Image-Text Embeddings

- Proposes a CLIP style setup in Hyperbolic space

- Uses the Lorentzian space due to numerical instabilities in Poincaré space
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Hyperbolic Image-Text Embeddings

- Proposes a CLIP style setup in Hyperbolic space

- Uses the Lorentzian space due to numerical instabilities in Poincaré space

Contrastive Loss

(neg. Lorentzian distance)
T + Entailment Loss W
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Projection Projection
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Hyperbolic Image-Text Embeddings

- Two losses: Contrastive and Entailment loss
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Hyperbolic Image-Text Representations, Desai et al., 2023

Contrastive Loss

(neg. Lorentzian distance)
T + Entailment Loss W

expmg expmg
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- Standard contrastive loss (like in CLIP)

- However, uses Lorentzian distance instead of cosine similarity
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Contrastive Loss

- Standard contrastive loss (like in CLIP)

- However, uses Lorentzian distance instead of cosine similarity

- Lorentzian inner product: (x,y); = x oy = xgy9 — (X1y1 + = + X4V4

- Lorentzian distance: d; (x,y) = \E cosh™(c {x,y),)
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Contrastive Loss

- Standard contrastive loss (like in CLIP)

- However, uses Lorentzian distance instead of cosine similarity

- Lorentzian inner product: (x,y); = x oy = xgy9 — (X1y1 + = + X4V4

- Lorentzian distance: d; (x,y) = \E cosh™(c {x,y),)

Minimize distance for positive pairs
Maximize distance for negative pairs
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Hyperbolic Image-Text Representations, Desai et al., 2023
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Entailment Loss

- Key concept: Fine-grained concepts should be embedded deeper into the space
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Entailment Loss

- Key concept: Fine-grained concepts should be embedded deeper into the space

- Enforced by making sure the fine-grained concept is within the entailment cone of a parent concept
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Entailment Loss

- Key concept: Fine-grained concepts should be embedded deeper into the space

- Enforced by making sure the fine-grained concept is within the entailment cone of a parent concept
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Entailment Loss

- Key concept: Fine-grained concepts should be embedded deeper into the space

- Enforced by making sure the fine-grained concept is within the entailment cone of a parent concept
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Entailment Loss

- Key concept: Fine-grained concepts should be embedded deeper into the space

- Enforced by making sure the fine-grained concept is within the entailment cone of a parent concept
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Hyperbolic Image-Text Representations, Desai et al., 2023
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Entailment Loss Effect
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Entailment Loss Effect

MERU CLIP
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Entailment Loss Effect

MERU CLIP
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new york city  new york city architecture inspiration
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Entailment Loss Effect

MERU CLIP

MERU CLIP
brooklyn bridge  photo of taj mahal taj mahal sydney opera  sydney opera
brooklyn bridge, through an arch house house
new york monument travel opera house  opera house
new york city new yorkcity  grchitecture  inspiration holiday gift
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How is this used for Taxonomic Classification?

- Assume paired multi-modal data, with expert textual labels

- The textual labels contains the full hierarchy!
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3p*

How is this used for Taxonomic Classification?
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Abstract

Taxonomic classification in biodiversity research involves
organizing biological specimens into siructured hierarchies
based on evidence, which can come from multiple modal-
ities such as images and genetic information. We investi-
pated whether hyperbolic networks provide a better embed-
ding space for such hierarchical models. Our method em-
beds multimodal inputs into a shared hyperbolic space us-
ing contrastive and novel entailment-based objectives. Ex-
periments on the BIOSCAN-IM dataser show that hyper-
bolic embedding gs achieve competitive performance with
Euclidean baselines, and owtperforms all other models on
unseen species classification using DNA barcodes. How-
ever, fine-grained classification and open-world generaliza-
tion remain challenging. This framework offers a scalable
and structure-aware foundation for biodiversity modelling,
with potential applications to species discovery, ecological
monitoring, and conservation efforts.

L. Introduction

Taxonomic classification is essential for monitoring and
mitigating biodiversity loss, requiring accurate identifica-
tion of specimens across diverse ecosystems. DMNA bar-
codes [1, 7] provide a way to classify specimens to known
taxa or identify them as novel to science, but classification
to the species level remains challenging when barcodes are
unavailable. Totackle this, Gong et al. [5] showed that using
contrastive learning to align DNA barcode embeddings to
image embeddings can improve classification at the species
level even when only using images as input at inference.
However, a key limitation of CLIBD [5] and other re-
cent biodiversity-focused multimodal methods [17] is that
the methods do not utilize the known taxonomic hierarchy
of the input data. To address this, we explore whether em-
beddings in hyperbolic space can better capture the hierar-
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Figure 1. (a) Contrastive loss: instance-level alipnment between
modalities. (b) Entailment loss: enforces hierarchy within the text
modalily using entuilment cones. () Stacked entailment loss:
combines EL and cross-modal constraints by aligning image and
DNA embeddings to multiple levels of the text erarchy.

chical structure of taxonomic relationships, enabling better
fine-grained classification. While training, the model takes
inputs from multiple modalities— DNA barcodes, specimen
images, and hierarchical taxonomic labels—and co-aligns
their embeddings into a shared hyperbolic space to promote
taxonomic alignment across modalities.

Our experimental results show that our hyperbolic mult-
modal learning framework achieves strong performance in
taxonomic classification and retrieval, especially at higher
taxonomic ranks. The approach consistently matches or
outperforms Euclidean baselines and better preserves the
hierarchical relationships among modalities. However, all
methods—including ours—face challenges in fine-grained
species classification, particularly for previously unseen
taxa. These results highlight both the potential of hyper-
bolic learning for hierarchical biological data, and the ongo-
ing difficulty of open-waorld classification for biodiversity.
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DNA-to-DNA Image-to-Image Image-to-DNA

Rank Method  EL config. Full Text Space  Seem Unseen H.M. Seen Unseen H.M. Seen Unseen H.M.
CLIBD - v R™ 89.1 87.8 884 995 664 T79.6 98.7 495 659

CL - v H} 89.1 85.6 873 98.5 612 755 89.1 478 622

Ord EL+CL  Pos. v H? 886 86,5 875 98.6 569 721 778 484 597
T SEL Pos.+Neg. X H? 884 908 89.6 793 623 698 987 489 654
SEL4+CL  Pos.+Neg. X H7 887 863 875 994 659 793 786 482 597

SEL+CL  Pos.+Neg. v H} 889  88.2 885 99.0 609 754 786 489 603
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DNA-to-DNA Image-to-Image Image-to-DNA
Rank Method  EL config. Full Text Space  Seen Unseen H.M. Seen Unseen H.M. Seen Unseen H.M.
CLIBD - v R™ 89.1 87.8 B84 99.5 664 T79.6 98.7 495 659
CL - v Hy 89.1 856 873 98.5 61.2 755 89.1 478 622
Order EL+CL  Pos. v H? 88.6 865 8IS 98.6 569 721 77.8 484 599
SEL Pos.+Neg. X H7, 884 908 89.6 79.3 623 698 98.7 489 654
SEL+CL  Pos.+Neg. X H} 887 863 RIS 99.4 659 793 8.6 482 597
SEL+CL  Pos.+Neg. v Hy 889  BR.2 8BRS 99.0 609 754 78.6 489 603
CLIBD - v R" 908 758 826 89.2 522 659 83.6 193 314
CL - v H 903 766 829 839 485 6l4 79.6  18.8 304
Family EL+CL  Pos. v H? 893 749 814 81.% 376 515 76.7 168 276
SEL Pos.+Neg. X H, 868 T8 826 79.0  41.8 547 789 184 299
SEL+CL  Pos.+Neg. X H} 89.0 769 825 79.6 46.6 588 8.7 17.3 284
SEL+CL  Pos.+Neg. v H? 91.2 T71.0 836 824 415 552 8.1 174 284
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] SEL Pos.+Neg. X H, 827 659 734 62.1 292 397 63.1 6.6 120
SEL+CL  Pos.+Neg. X H} 83.6 669 743 633 331 435 67.6 6.4 117

SEL+CL  Pos.+Neg. v H? 858 648 739 648 275 386 64.8 6.2 114
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SEL+CL  Pos.+Neg. X H} 805 632 708 46.8  22.8 307 54.2 0.7 1.4
SEL+CL  Pos.+Neg. v H? 826 62.0 708 478 19.0 272 51.4 1.0 2.1
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- Across all ranks Hypebolic models match or outperform Euclidean CLIBD
- SEL methods consistently perform best at unseen DNA retrieval

- But Euclidean CLIBD is better at image retrieval tasks
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BIOSCAN-1M Results Summary

- Across all ranks Hypebolic models match or outperform Euclidean CLIBD
- SEL methods consistently perform best at unseen DNA retrieval

- But Euclidean CLIBD is better at image retrieval tasks

—> This is still ongoing research, so we hope to further improve results within the coming months
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