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Abstract

Can pretrained models generalize to new datasets without any retraining? We deploy pretrained image
maodels on datasets they were not trained for, and investigate whether their embeddings form meaningful
clusters. Our suite of benchmarking experiments use encoders pretrained solely on ImageMNet-1k with
either supervised or self-supervised training techniques, deploved on image datasets that were noi seen
during training, and clustered with conventional clustering algorithms. 'T'his evaluation provides new
insights into the embeddings of self-supervised models, which prioritize different features to supervised
models. Supervised encoders typically offer more utility than S5L encoders within the training domain,
and vice-versa [ar outside of it, however, fine-tuned encoders demonstrate the opposite trend. Clustering
provides a way to evaluate the utility of self-supervised learned representations orthogonal to existing
methods such as kNN, Additionally, we find the silhouetie score when measured in a UMAP-reduced
space is highly correlated with clustering performance, and can therefore be used as a praxy for clustering
performance on data with no ground truth labels. Our code implementation is available at https:
/fgithub. com/acottclowe/za—eel-clustering/.

1 Introduction

Sell-supervised learning (S8L) has altracted greal inlerest in recenl years across almeost every machine learning
sub-lield, due b Lhe promise of being able Lo harness large quantitics of unlabelled data amd oblaining peneric
feature emboeddings useful for a variely of downstream Lasks (Balesiricero ol al., 2023). This has, for example,
ledd Lo Lhe development of impressive large language models (Brown el al., 2020) and compuler vision syslems
Lrained on 1 billion images (Goyal el al, 2021). However, while the embeddings from an S5L-Urained encoder
can perform well on downstream Lasks aller line-Luning, the petwork, Uhere has been less investigation inlo the
utility of the boddings without ne-tuning. Prior work (Vase ol al, 2022; Zhou and Zhang, 2022) sugpests
S55L feature enooders generale embeddings suilable for clustering, bul nonelheless adjust Lhe fealure enooders
Lhrough line-tuning. Yet, widespread interest in the application of large pretrained models on custom dalasels,
combined with prohibitive cost of compule, make this question mportant amd increasingly wrgent.

We lind Lhal lo dale Lthere has been no investigalion inlo whether S531L-Lrained fealure coooders can
serve as a foundation for clustering, yickling informative groupings of embeddings on real-world datasels

that were totally unseen Lo Lhe encoder during ils Lraining. Vaee ol al. (2023) showed Lthatl features from
S5L encoders are typically biased toward shape features and ool color, texture, or counl when clustered
using K-Means, However, this was conducted using a synlhelic datasel, where very specilic object aliribules
oould be disentangled. In contrast, in Lhis work we perform a zero-shol trunsfler-lonrmang Losk, evaluating Lhe
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Training Large Scale Networks

- Modern "foundation” models can be prohibitevely expensive to train
- Not sustainable (or feasible) to retrain these models

- How can such models be efficiently reused?

Model to GPU Power Total power Carbon emitted
Reproduce GPU Type consumption GPU-hours  PUE consumption (tCO2eq)
DINOv2-g¢ A100-40GB 400W 22,016 1.1 9.7 MWh 3.7

yA
SDU? DINOv2: Learning Robust Visual Features without Supervision, Oquab et al., 2024
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Evaluation through Probing

- Probing is a way of converting a SSL pretained encoder into a classifiers

—> Typically done via kNN prbing or linear probing

= KNN probing = for each test point assign label based on k closest samples from a labeled dataset
—> Linear probing = train a Linear layer on top of the frozen backbone (ie logistic regression)
- But what if you don’t want to train anything or don’t have a labeled dataset?

- Could clustering of features be a viable alternative?
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The Main ldea

How well does features from (SSL)-pretrained networks cluster?

- We take already trained networks
- Only fit a classical clustering method on a limited set of "training” datasets

- Transfer encoders and fitted clustering method to new datasets — no adjustments made!
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Encoders

- We only consider networks trained on ImageNet-1K

- Most commonly used backbones for SSL pretraining (at the time) are: ViT-B and ResNet-50
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Encoders

- Cross-Entropy Supervised

- Contrastive Learning: MoCo-v3
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Encoders

- Cross-Entropy Supervised

softmax

- Contrastive Learning: MoCo-v3

- Self-Distillation: DINO
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Encoders

- Cross-Entropy Supervised
- Contrastive Learning: MoCo-v3
—> Self-Distillation: DINO

- Canonical Correlation Analysis: VICReg
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Encoders

- Cross-Entropy Supervised

—> Contrastive Learning: MoCo-v3

—> Self-Distillation: DINO

—> Canonical Correlation Analysis: VICReg

- Masked Image Modelling: MAE
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Clustering Methods

- Partitioning-based: K-Means

- Hierarchical: Agglomerative Clustering (AC)
- With and without known number of clusters

- Graph theoretical: Affinity Propagation (AP) & Spectral

- Density-based: HDBSCAN
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Dimensionality Reduction

—> Classic clustering method often works best with dimensionality reduction

—> Principle Component Analysis (PCA)
- Uniform Manifold Approximation and Projection (UMAP)

- Pairwise Controlled Manifold Approximation Projection (PaCMAP)
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- Normalized between 0 (no mutual information) to 1 (perfect correlation)
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Evaluation Metric

- We evaluate constructed clusters by comparing to Ground Truth labels

- Normalized Mututal Information (NMI) is a common metric

- Normalized between 0 (no mutual information) to 1 (perfect correlation) /

Mutual Information

MI(U, V)
NMI(U, V) = mean(H(U) + H(V))

Entropy of Clusters
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- We evaluate constructed clusters by comparing to Ground Truth labels
- Normalized Mututal Information (NMI) is a common metric
- Normalized between 0 (no mutual information) to 1 (perfect correlation)

- However, NMI is not corrected for chance. Simply increasing number of clusters can increase NMI
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Evaluation Metric

- We evaluate constructed clusters by comparing to Ground Truth labels

- Normalized Mututal Information (NMI) is a common metric

- Normalized between 0 (no mutual information) to 1 (perfect correlation)

- However, NMlI is not corrected for chance. Simply increasing number of clusters can increase NMI

- Use Adjusted Mutual Information (AMI) instead

MI(U, V) — E[MI(U, V)]
mean(H(U) + H(V)) — EIMI(U, V)]

AMI(U, V) =

SDU&

AP nps

Apnpsy



The Maersk Mc-Kinney Moller Institute

Hyperparameter Search

SDU&

AP nps

Npnps#



The Maersk Mc-Kinney Moller Institute

Hyperparameter Search

- HPs selectected over three ImageNet-based datasets

SDU&

AP nps

Npnps#



The Maersk Mc-Kinney Moller Institute

Hyperparameter Search

- HPs selectected over three ImageNet-based datasets

ImageNet-1K

AP nps

Apnpsy



The Maersk Mc-Kinney Moller Institute

Hyperparameter Search

- HPs selectected over three ImageNet-based datasets

ImageNet-1K

Imagenette

n02107683 (239)

n01682714 (40)

n01443537 (1)

n02979186 (2)

n03425413 (7)

n03394916 (5)

n03000684 (3)

AP nps

Apnpsy



The Maersk Mc-Kinney Moller Institute

Hyperparameter Search

- HPs selectected over three ImageNet-based datasets

ImageNet-1K

Imagenette

Imagewoof
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Hyperparameter Search

- HPs selectected over three ImageNet-based datasets
—> Create validation splits via class-stratified sampling

—> First search dimensionality reduction
- Then line-search clustering method hyperparameters

- All clustering methods (except Spectral) performs best with UMAP
- Reducing to 5-200 dimensions leads to equal performance
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Datasets

Type Dataset Reference # Sample # Class p Description

In-Domain ImageNet-1k Russakovsky et al. (2015) 50000 1000 1.00 Diverse general objects
ImageNet-v2 Recht et al. (2019) 10000 1000 1.00 Diverse general objects
CIFAR-10 Krizhevsky (2009) 10000 10 1.00 Diverse general objects
CIFAR-100 Krizhevsky (2009) 10000 100 1.00 Diverse general objects
ImageNet-9 originals  Xiao et al. (2020) 4050 9 1.00 Diverse general objects
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Type Dataset Reference # Sample # Class p  Description

In-Domain ImageNet-1k Russakovsky et al. (2015) 50000 1000 1.00 Diverse general objects
ImageNet-v2 Recht et al. (2019) 10000 1000 1.00 Diverse general objects
CIFAR-10 Krizhevsky (2009) 10000 10 1.00 Diverse general objects
CIFAR-100 Krizhevsky (2009) 10000 100 1.00 Diverse general objects
ImageNet-9 originals  Xiao et al. (2020) 4050 9 1.00 Diverse general objects

Domain-shift ImageNet-9 FG-only Xiao et al. (2020) 4050 9 1.00 Isolated foregrounds
ImageNet-9 MixRand  Xiao et al. (2020) 4050 9 1.00 Remixed fore/background
ImageNet-R Hendrycks et al. (2021a) 30000 200 8.43  Art/sculptures of objects
ImageNet-Sketch Wang et al. (2019) 50 889 1000 1.02 Sketches of objects
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Near-OOD ImageNet-O Hendrycks et al. (2021b) 2000 200 6.00 Diverse general objects
LSUN Yu et al. (2015) 10000 10 1.00  Urban/indoor scenes
Places365 Zhou et al. (2018) 36 500 365 1.00  Scenes
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Type Dataset Reference # Sample # Class p  Description

In-Domain ImageNet-1k Russakovsky et al. (2015) 50000 1000 1.00 Diverse general objects
ImageNet-v2 Recht et al. (2019) 10000 1000 1.00 Diverse general objects
CIFAR-10 Krizhevsky (2009) 10000 10 1.00 Diverse general objects
CIFAR-100 Krizhevsky (2009) 10000 100 1.00 Diverse general objects
ImageNet-9 originals  Xiao et al. (2020) 4050 9 1.00 Diverse general objects

Domain-shift ImageNet-9 FG-only Xiao et al. (2020) 4050 9 1.00 Isolated foregrounds
ImageNet-9 MixRand Xiao et al. (2020) 4050 9 1.00 Remixed fore/background
ImageNet-R Hendrycks et al. (2021a) 30000 200 8.43  Art/sculptures of objects
ImageNet-Sketch Wang et al. (2019) 50 889 1000 1.02 Sketches of objects

Near-OOD ImageNet-O Hendrycks et al. (2021b) 2000 200 6.00 Diverse general objects
LSUN Yu et al. (2015) 10000 10 1.00  Urban/indoor scenes
Places365 Zhou et al. (2018) 36 500 365 1.00  Scenes

Fine-grained FGVC Aircraft Maji et al. (2013) 3333 100 1.03  Aircraft variants
Stanford Cars Krause et al. (2013) 8041 196 2.83 Car variants
Oxford Flowers Nilsback and Zisserman (2008) 6149 102 11.90 Flower variants
NABirds Van Horn et al. (2015) 24633 555 6.67 Bird species
BIOSCAN-1M Gharaee et al. (2023) 24799 2688 782,50 Insect species
iNaturalist-2021 Van Horn et al. (2021) 100000 10000 1.00 Plant & animal species
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Type Dataset Reference # Sample # Class p  Description

In-Domain ImageNet-1k Russakovsky et al. (2015) 50000 1000 1.00 Diverse general objects
ImageNet-v2 Recht et al. (2019) 10000 1000 1.00 Diverse general objects
CIFAR-10 Krizhevsky (2009) 10000 10 1.00 Diverse general objects
CIFAR-100 Krizhevsky (2009) 10000 100 1.00 Diverse general objects
ImageNet-9 originals  Xiao et al. (2020) 4050 9 1.00 Diverse general objects

Domain-shift ImageNet-9 FG-only Xiao et al. (2020) 4050 9 1.00 Isolated foregrounds
ImageNet-9 MixRand Xiao et al. (2020) 4050 9 1.00 Remixed fore/background
ImageNet-R Hendrycks et al. (2021a) 30000 200 8.43  Art/sculptures of objects
ImageNet-Sketch Wang et al. (2019) 50 889 1000 1.02 Sketches of objects

Near-OOD ImageNet-O Hendrycks et al. (2021b) 2000 200 6.00 Diverse general objects
LSUN Yu et al. (2015) 10000 10 1.00  Urban/indoor scenes
Places365 Zhou et al. (2018) 36 500 365 1.00  Scenes

Fine-grained FGVC Aircraft Maji et al. (2013) 3333 100 1.03  Aircraft variants
Stanford Cars Krause et al. (2013) 8041 196 2.83 Car variants
Oxford Flowers Nilsback and Zisserman (2008) 6149 102 11.90 Flower variants
NABirds Van Horn et al. (2015) 24633 555 6.67 Bird species
BIOSCAN-1M Gharaee et al. (2023) 24799 2688 782.50 Insect species
iNaturalist-2021 Van Horn et al. (2021) 100000 10000 1.00 Plant & animal species

Far-OOD CelebA Liu et al. (2015) 19962 1000  32.00 Human faces (identity)
UTKFace Zhang et al. (2017) 5925 101  549.00 Human faces (age)
BreakHis Spanhol et al. (2016) 3164 32 8.60 Tumor tissue microscopy
DTD Cimpoi et al. (2014) 1880 47 1.00 Texture descriptions
EuroSAT Helber et al. (2019) 4050 10 1.50 Satellite RGB images
MNIST LeCun et al. (1998) 10000 10 1.27 Handwritten digits
Fashion MNIST Xiao et al. (2017) 10000 10 1.00 Clothing articles
SVHN Netzer et al. (2011) 26 032 10 3.20 House numbers
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Comparing Supervised & SSL Pretrained
Encoders

- We compare the effect of SSL pretraining to fully-supervised Cross Entropy models

- Measuered as difference in AMI scores (A AMI)
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SSL Pretrained Encoders
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SSL Pretrained Encoders
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SSL Pretrained Encoders
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SSL Pretrained Encoders
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Taxonomic Hierarchies

- How well does the clusters match the taxonomic hierarchies?

MI(YTrye, Y] — E[MI(Yrrge Y
AMI(Y1rye, Ypred) = (Yrrue, Yprea) [MI(Yrrues Ypred)]

mean(H(YTrue) + H(YPred)) - IE[MI(YTrue:YPred)
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Taxonomic Hierarchies

- How well does the clusters match the taxonomic hierarchies?

MI(YTrye, Y) — E[MI(Yrrye Y
AMI(YTrue:YPred)= (True Pred) [ (True Pred)]

H(YTrue) - IE[MI(YTrue: YPred)
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Taxonomic Hierarchies

- How well does the clusters match the taxonomic hierarchies?

- Now describes the percentage of entropy in the label that is explained by observing the prediction

MI(YTrue» YPred) — E [MI(YTrue» YPred)]

AMI(Y- )Y —
( True Pred) H(YTrue) - IE[MI(YTrue:YPred)
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Taxonomic Hierarchies
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Taxonomic Hierarchies

— X-Ent. WICReqg B RN50
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(a) iNaturalist-21 AMI scores.
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(b) BIOSCAN-1M AMI scores.
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Taxonomic Hierarchies —
BIOSCAN-5M
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How does it compare to probing?

- Probing is a way of converting a SSL pretained encoder into a classifiers

—> Typically done via kNN prbing or linear probing

- kNN probing = for each test point assign label based on k closest samples from a labeled dataset

-> Linear probing = train a Linear layer on top of the frozen backbone (ie logistic regression)
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How does it compare to probing?

- Probing is a way of converting a SSL pretained encoder into a classifiers

—> Typically done via kNN prbing or linear probing

= KNN probing = for each test point assign label based on k closest samples from a labeled dataset

—> Linear probing = train a Linear layer on top of the frozen backbone (ie logistic regression)

- We compare Spearman’s Correlation between AMI and kNN accuracy
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How does it compare to probing?

SDU&

Arch. Clusterer k=1 k=10 k=20 k=100 k=200

RN50 K-Means 51 48 48 48 49
Spectral 54 52 52 53 53
ACw/ C 49 47 47 47 47
AC w/o C 45 44 44 44 44
Affinity Prop. 49 47 47 47 47
HDBSCAN 51 49 49 49 49

ViT-B K-Means 37 37 37 39 39
Spectral 37 38 38 40 40
ACw/ C 33 34 34 35 36
AC w/o C 39 40 40 41 41
Affinity Prop. 36 37 36 38 38
HDBSCAN 38 39 38 40 40)

* Correlation scores multiplied by 100 for readability
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How does it compare to probing?

- AMI and kNN accuracy is only
moderately correlated

- ZSC can therefore be seen as an
orthogonal evaluation process to probing

SDU&

Arch. Clusterer k=1 k=10 k=20 k=100 k=200

RN50 K-Means 51 48 48 48 49
Spectral 54 52 52 53 53
ACw/ C 49 47 47 47 47
AC w/o C 45 44 44 44 44
Affinity Prop. 49 47 47 47 47
HDBSCAN 51 49 49 49 49

ViT-B K-Means 37 37 37 39 39
Spectral 37 38 38 40 40
ACw/ C 33 34 34 35 36
AC w/o C 39 40 40 41 41
Affinity Prop. 36 37 36 38 38
HDBSCAN 38 39 38 40 40)

* Correlation scores multiplied by 100 for readability
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- But what if you don’t have a labeled dataset?

—> Cluster quality can be measured using the Silhouette score

- The Silhouette score is an intrinsic measure based on how "tight” and separated clusters are
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What if you don’t have Ground Truth?

- But what if you don’t have a labeled dataset?

—> Cluster quality can be measured using the Silhouette score

- The Silhouette score is an intrinsic measure based on how "tight” and separated clusters are

— b,
N Z max ai,bi)

— Mean within cluster distance
b; — Mean distance to closest other cluster
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What if you don’t have Ground Truth?

- But what if you don’t have a labeled dataset?

—> Cluster quality can be measured using the Silhouette score

- The Silhouette score is an intrinsic measure based on how "tight” and separated clusters are

- Are the GT-based AMI scores and GT-free Silhouette scores correlated?

SDU&

AP nps

Apnpsy



The Maersk Mc-Kinney Moller Institute
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What if you don’t have Ground Truth?

Original Embeddings
rank(AMI)
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What if you don’t have Ground Truth?

Original Embeddings
rank(AMI)

UMAP-Reduced
rank(AMI)
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What if you don’t have Ground Truth?

- Yes, Silhouette and AMI scores are correlated!
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What if you don’t have Ground Truth?

- Yes, Silhouette and AMI scores are correlated!
- Allows for proxy-model evalaution on new tasks without any label
- Much more flexible model selection process compared to

1) KNN probing, which requires stored labeled data points
2) Linear probing, which requires fitting a large linear layer
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