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Training Large Scale Networks
 Modern ”foundation” models can be prohibitevely expensive to train

 Not sustainable (or feasible) to retrain these models

 How can such models be efficiently reused?
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Evaluation through Probing
 Probing is a way of converting a SSL pretained encoder into a classifiers

 Typically done via kNN prbing or linear probing

 kNN probing = for each test point assign label based on k closest samples from a labeled dataset

 Linear probing = train a Linear layer on top of the frozen backbone (ie logistic regression)

 But what if you don’t want to train anything or don’t have a labeled dataset?

 Could clustering of features be a viable alternative?
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The Main Idea

How well does features from (SSL)-pretrained networks cluster?

We take already trained networks

 Only fit a classical clustering method on a limited set of ”training” datasets

 Transfer encoders and fitted clustering method to new datasets – no adjustments made!
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Encoders
We only consider networks trained on ImageNet-1K

 Most commonly used backbones for SSL pretraining (at the time) are: ViT-B and ResNet-50
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Encoders

 Cross-Entropy Supervised

 Contrastive Learning: MoCo-v3

 Self-Distillation: DINO

 Canonical Correlation Analysis: VICReg
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Encoders

 Cross-Entropy Supervised

 Contrastive Learning: MoCo-v3 

 Self-Distillation: DINO

 Canonical Correlation Analysis: VICReg

 Masked Image Modelling: MAE

M a s k e d  A u t o e n c o d e r s  A r e  S c a l a b l e  V i s i o n  L e a r n e r ,  H e  e t  a l . ,  2 0 2 1
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Clustering Methods
 Partitioning-based: K-Means

 Hierarchical: Agglomerative Clustering (AC)
 With and without known number of clusters

 Graph theoretical: Affinity Propagation (AP) & Spectral

 Density-based: HDBSCAN
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Dimensionality Reduction
 Classic clustering method often works best with dimensionality reduction

 Principle Component Analysis (PCA)

 Uniform Manifold Approximation and Projection (UMAP)

 Pairwise Controlled Manifold Approximation Projection (PaCMAP)
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Evaluation Metric
We evaluate constructed clusters by comparing to Ground Truth labels

 Normalized Mututal Information (NMI) is a common metric

 Normalized between 0 (no mutual information) to 1 (perfect correlation)

Mutual Information

Entropy of Clusters
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 However, NMI is not corrected for chance. Simply increasing number of clusters can increase NMI
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Evaluation Metric
We evaluate constructed clusters by comparing to Ground Truth labels

 Normalized Mututal Information (NMI) is a common metric

 Normalized between 0 (no mutual information) to 1 (perfect correlation)

 However, NMI is not corrected for chance. Simply increasing number of clusters can increase NMI

 Use Adjusted Mutual Information (AMI) instead
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Hyperparameter Search
 HPs selectected over three ImageNet-based datasets

ImageNet-1K Imagenette Imagewoof



sdu.dk
#sdudk

 

The Maersk Mc-Kinney Moller InstituteThe Maersk Mc-Kinney Moller Institute

Hyperparameter Search
 HPs selectected over three ImageNet-based datasets

 Create validation splits via class-stratified sampling



sdu.dk
#sdudk

 

The Maersk Mc-Kinney Moller InstituteThe Maersk Mc-Kinney Moller Institute

Hyperparameter Search
 HPs selectected over three ImageNet-based datasets

 Create validation splits via class-stratified sampling

 First search dimensionality reduction
 Then line-search clustering method hyperparameters



sdu.dk
#sdudk

 

The Maersk Mc-Kinney Moller InstituteThe Maersk Mc-Kinney Moller Institute

Hyperparameter Search
 HPs selectected over three ImageNet-based datasets

 Create validation splits via class-stratified sampling

 First search dimensionality reduction
 Then line-search clustering method hyperparameters

 All clustering methods (except Spectral) performs best with UMAP
 Reducing to 5-200 dimensions leads to equal performance
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Comparing Supervised & SSL Pretrained 
Encoders
We compare the effect of SSL pretraining to fully-supervised Cross Entropy models

 Measuered as difference in AMI scores (ΔAMI)
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 How well does the clusters match the taxonomic hierarchies?

AMI YTrue, YPred =
MI YTrue, YPred − 𝔼𝔼[MI YTrue, YPred ]

H YTrue − 𝔼𝔼[MI YTrue, YPred



sdu.dk
#sdudk

 

The Maersk Mc-Kinney Moller InstituteThe Maersk Mc-Kinney Moller Institute

Taxonomic Hierarchies
 How well does the clusters match the taxonomic hierarchies?

 Now describes the percentage of entropy in the label that is explained by observing the prediction

AMI YTrue, YPred =
MI YTrue, YPred − 𝔼𝔼[MI YTrue, YPred ]

H YTrue − 𝔼𝔼[MI YTrue, YPred
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Taxonomic Hierarchies –
BIOSCAN-5M

Image Encoders DNA Encoders
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Evaluations
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How does it compare to probing?
 Probing is a way of converting a SSL pretained encoder into a classifiers

 Typically done via kNN prbing or linear probing

 kNN probing = for each test point assign label based on k closest samples from a labeled dataset

 Linear probing = train a Linear layer on top of the frozen backbone (ie logistic regression)

We compare Spearman’s Correlation between AMI and kNN accuracy
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How does it compare to probing?
 AMI and kNN accuracy is only 

moderately correlated

 ZSC can therefore be seen as an
orthogonal evaluation process to probing

* Correlation scores multiplied by 100 for readability
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What if you don’t have Ground Truth?
 But what if you don’t have a labeled dataset?

 Cluster quality can be measured using the Silhouette score

 The Silhouette score is an intrinsic measure based on how ”tight” and separated clusters are

𝑎𝑎𝑖𝑖 − 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑏𝑏𝑖𝑖 − 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
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What if you don’t have Ground Truth?
 But what if you don’t have a labeled dataset?

 Cluster quality can be measured using the Silhouette score

 The Silhouette score is an intrinsic measure based on how ”tight” and separated clusters are

 Are the GT-based AMI scores and GT-free Silhouette scores correlated?
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What if you don’t have Ground Truth?
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What if you don’t have Ground Truth?
 Yes, Silhouette and AMI scores are correlated!

 Allows for proxy-model evalaution on new tasks without any label

 Much more flexible model selection process compared to 

1) kNN probing, which requires stored labeled data points
2) Linear probing, which requires fitting a large linear layer 
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