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POEM: Pipeline



155

POEM: Detailed Pipeline



156

POEM: Detailed Pipeline



157

POEM: Detailed Pipeline



158

POEM: Detailed Pipeline



159

POEM: Detailed Pipeline



160

POEM: Detailed Pipeline



161

POEM: qualitative results

Scale the bus 
by 0.56

LEDITS++
[Brack, CVPR 
2024]

Ours
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POEM: qualitative results

Move the pear 
left by 150px, 
and make it red

IP2P
[Brooks, 
CVPR 2023]

Ours



Scaling Test-Time Compute
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Test Time Scaling for Image Generation

Erik Wold Riise, Mehmet Onurcan Kaya, Dim P. Papadopoulos
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[Work in progress]
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Test-time Scaling
Rather than relying on ever-larger pretraining budgets, test-time 

methods use dynamic inference strategies that allow models to 

“think longer” on harder problems
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Test-time Scaling (LLMs)

Requires an extrernal verifier!!
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Test-time Scaling (image generation)

[Deepmind, CVPR 2025]
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Test-time Scaling (image generation)

[Deepmind, CVPR 2025]
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Quantitative Results (DrawBench)

Ours  (2B) Baseline

Ours  (2B) + Search (Best)



Quantitative Results (Compositional tasks)

Ours  (2B) + Search



Test Time Augmentation for MLLMs

Mehmet Onurcan Kaya, Desmond Elliott, Dim P. Papadopoulos
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[Work in progress]
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MLLMs (VLMs)

Survey paper: https://arxiv.org/pdf/2312.17432

Ours  (2B) + Search (Best)

https://arxiv.org/pdf/2312.17432
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Leveraging LLMs
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MSLMs (Multimodal Small Language Models)

• Efficient but performance 
drops under domain shift

• Existing test-time compute 
require extra models

• Test-Time Augmentation 
is underexplored in 
multimodal settings!!



179

MSLMs (Multimodal Small Language Models)

• Efficient but performance 
drops under domain shift

• Existing test-time compute 
require extra models

• Test-Time Augmentation 
is underexplored in 
multimodal settings!!

Our Goal :
No extra training, no additional models → 

Improve robustness and accuracy using TTA
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Data Augmentation

dog
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VQA

What is the color of the car of the left? How many cars appear in the image?

What color is the car in the middle?
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Test time Augmentation

• how to augment?
• how to aggregate?
• where to aggregate?
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Test time Augmentation
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Test time Augmentation

Our approach yields improvement 
with minimal compute and memory 
overhead, making it practical even 
on consumer GPUs.



Thank you!!!

185


	Slide 151: POEM: Motivation
	Slide 152: POEM: Motivation
	Slide 153: POEM: Motivation
	Slide 154: POEM: Pipeline
	Slide 155: POEM: Detailed Pipeline
	Slide 156: POEM: Detailed Pipeline
	Slide 157: POEM: Detailed Pipeline
	Slide 158: POEM: Detailed Pipeline
	Slide 159: POEM: Detailed Pipeline
	Slide 160: POEM: Detailed Pipeline
	Slide 161: POEM: qualitative results
	Slide 162: POEM: qualitative results
	Slide 163: Scaling Test-Time Compute
	Slide 164: Test Time Scaling for Image Generation
	Slide 165: Test-time Scaling
	Slide 166: Test-time Scaling (LLMs)
	Slide 167: Test-time Scaling (LLMs)
	Slide 168: Test-time Scaling (LLMs)
	Slide 169: Test-time Scaling (image generation)
	Slide 170: Test-time Scaling (image generation)
	Slide 171: Qualitative Results
	Slide 172: Qualitative Results
	Slide 173
	Slide 174
	Slide 175: Test Time Augmentation for MLLMs
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185: Thank you!!!

