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Contrastive Learning
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Multimodal SSL

Don’t learn from isolated images -- take images together with some context

Video: Image together with adjacent video frames

Agrawal et al, “Learning to See by Moving”, ICCV 2015

Wang et al, “Unsupervised Learning of Visual Representations using Videos”, ICCV 2015
Pathak et al, “Learning Features by Watching Objects Move”, CVPR 2017

Sound: Image with audio track from video

Owens et al, “Ambient Sound Provides Supervision for Visual Learning”, ECCV 2016
Arandjelovic and Zisserman, “Look, Listen and Learn”, ICCV 2017

3D: Image with depth map or point cloud

Xie et al, “PointContrast: Unsupervised Pre-training for 3D Point Cloud Understanding”, ECCV 2020
Zhang et al, “Self-supervised pretraining of 3D features on any point-cloud”, CVPR 2021
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CLIP

@®- points, similar to @ ®- points, similarto @
O- points, dissimilar to @ O- points, dissimilar to @

O

O

Figure 4 — We would like to bring black dots closer to the blue one, and push white dots away.
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CLIP: Zero-shot classification

(2) Create dataset classifier from label text
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Beyond CLIP: ImageBind
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MAE: Masked Auto Encoders
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Multimodal MAE
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Figure 1: Multimodal masked autoencoder (M3AE) consists of an encoder that maps language tokens and
image patches to a shared representation space, and a decoder that reconstructs the original image and language
from the representation.

[Geng et al 2022, Multimodal Masked Autoencoders Learn Transferable Representations]



MultiMAE

MultiMAE pre-training
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[Bachmann etal ECCV 2022]

MultiMAE

Single-modal fine-tuning
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Multimodal tasks (=Vision and Language Tasks)

Multimodal Classification

Image-Text Retrieval

Visual Grounding

Visual Question Answering and Visual Reasoning
Image Captioning

Text-to-image Generation
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Visual grounding

A dog is lying on the grass next to a frisbee.

(a) Phrase grounding.

The red frisbee next to the dog.

(b) Referring expression comprehension.

64



Visual grounding

A dog is lying on the grass next to a frisbee.

(a) Phrase grounding.

The red frisbee next to the dog.

(b) Referring expression comprehension.

Alignment

AAA

X< |
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Visual grounding

A dog is lying on the grass next to a frishee. The red frisbee next to the dog.

(a) Phrase grounding. (b) Referring expression comprehension.

*Inputs:

* Image: A visual representation of a scene or object.

» Natural language query: A text description or question that refers to a specific part of the

image.

*Output: Bounding box or segmentation mask: A spatial region within the image that
corresponds to the object or area described in the query. This is typically represented as
coordinates or a highlighted region.
*Task: Locating the relevant object or region: The model must correctly identify the part of the
image that matches the query. This involves understanding both the visual content of the image
and the linguistic meaning of the query.
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OWL-VIT (Vision Transformer for Open-World Localization)

Image-level contrastive pre-training
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. Object localization

Grounding DINO

Text understanding

-

COCO pre-defined categories

person

Standard Object Detection

(a) Closed-Set Object Detection

[Liu et al, ECCV 2024]

S

Human-input novel categories Human-input reference sentences

The bottom man with his head up

Referring Object Detection
(Referring Expression Comprehension) )

worldcup

Zero-Shot Transfer to
Novel Categories

¥
(b) Open-Set Object Detection

Collaborate with stable diffusion.

:Dog

Prompt (modify background): All people

around the world cheer with a worldcup.

(c) Application: Image Editing
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DINO: Self-supervised Vision Transformers

[Caron et al, Emerging Properties in Self-Supervised Vision Transformers, ICCV 2021]
[Oquab et al, DINOv2: Learning Robust Visual Features without Supervision, TMLR 2024]



DINO

Depth Estimation

State-of-the-art results and strong
generalization on estimating depth
from a single image.

Dense Matching

Consistently map all parts of an image
without supervision.

Semantic
Segmentation

Competitive results without any
fine-tuning on clustering an images
into object classes.

Sparse Matching

Compare DINOv2 patch features
across two images to match their most
similar parts.

[Caron et al, Emerging Properties in Self-Supervised Vision Transformers, ICCV 2021]
[Oquab et al, DINOv2: Learning Robust Visual Features without Supervision, TMLR 2024]

Instance Retrieval

Directly use frozen features to find
art pieces similar to an image from
a large art collection.
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softmax

student gg;

loss:

- p2 log p1

Clna

@)

—I— 5

softmax

centering

teacher gg;

DINO

Figure 2: Self-distillation with no labels. We illustrate DINO in
the case of one single pair of views (z1, x2) for simplicity. The
model passes two different random transformations of an input
image to the student and teacher networks. Both networks have
the same architecture but different parameters. The output of the

teacher network is centered with a mean computed over the batch.

Each networks outputs a K dimensional feature that is normalized
with a temperature softmax over the feature dimension. Their
similarity is then measured with a cross-entropy loss. We apply a
stop-gradient (sg) operator on the teacher to propagate gradients
only through the student. The teacher parameters are updated with
an exponential moving average (ema) of the student parameters.

[Caron et al, Emerging Properties in Self-Supervised Vision Transformers, ICCV 2021]
[Oquab et al, DINOv2: Learning Robust Visual Features without Supervision, TMLR 2024]
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DINO

[Caron et al, Emerging Properties in Self-Supervised Vision Transformers, ICCV 2021]
[Oquab et al, DINOv2: Learning Robust Visual Features without Supervision, TMLR 2024]



DINO: Results

ADE20k CityScapes Pascal VOC NYUd KITTI NYUd — SUN-RGBd

(62.9) (86.9) (89.0) (0.330) (2.10) (0.421)
: i i Method  Arch. lin.1 lin.4 DPT lin.1 lin.4 DPT  lin.1 lin.4 DPT
Method Arch. lin.  +ms lin.  +ms lin. +ms OpenCLIP ViT-G/14 0.541 0.510 0.414 357 321 256 0.537 0.476  0.408
OpenCLIP ViT-G/14 30.3 46.0 60.3 70.3 71.4 79.2 MAE ViT-H/14 0517 0.483 0.415 3.66 3.26 2.59 0.545 0523  0.506
DINO ViT-B/8  0.555 0.539  0.492 381 356 2.74 0.553 0.541  0.520
MAE ViT-H/14 33.3 30.7 58.4 61.0 67.6 63.3 iBOT ViT-L/16  0.417 0.387  0.358 331 307 255 0.447 0.435 0.426
DINO ViT-B/8 31.8 35.2 56.9 66.2 66.4 75.6 ViT-S/14  0.449 0.417  0.356 310 2.8 2.34 0.477 0.431  0.409
. . ViT-B/14 0.399 0.362  0.317 290 259 223 0.448  0.400 0.377
iBOT it L/ 16 46 475 648 745 82.3 84.3 DI (07 ViT-L/14 0.384 0.333  0.293 2.78 250 214 0.429 0.396 0.360

ViT-S/14 44.3 47.9 66.6 T7.1 81.1 82.6 ViT-g/14 0.344 0.298 0.279  2.62 2.35 211  0.402 0.362 0.338

ViT-B/14 473 51.3 69.4 80.0 82.5 849
ViT-L/14 47.7 53.1 70.3 80.9 82.1 86.0
ViT-g/14 49.0 53.0 71.3 81.0 83.0 86.2

DINOv2
Depth estimation results (RMSE, lower is better) on NYU Depth, KITTI and SUN

RGB-D with a linear classifier on top of one or four transformer layers and with a

DPT decoder. Underlined results outperform the state of the art.
Segmentation results (mloU) obtained on ADE20K, Cityscapes and Pascal VOC

with frozen features extracted DINOv2 and alternatives with a linear classifier.
Results with theMask2Former (M2F) pipeline are also shown.

[Caron et al, Emerging Properties in Self-Supervised Vision Transformers, ICCV 2021]
[Oquab et al, DINOv2: Learning Robust Visual Features without Supervision, TMLR 2024]
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Grounding DINO
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Fig. 2: Extending closed-set detectors to open-set scenarios.

[Liu etal, ECCV 2024]
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Grounding DINO
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Multimodal tasks (=Vision and Language Tasks)

Multimodal Classification

Image-Text Retrieval

Visual Grounding

Image Captioning

Visual Question Answering and Visual Reasoning

Text-to-image Generation
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Image captioning

Image Captioning (Paragraph)

Caption: There is a white dog lying on a grass field. There are a
lot of leaves on the grass field. There is a chain-link fence next to
the dog. There is a red frisbee under the dog’s left-front paw.

Image Captioning (Single Sentence)
Caption: A dog tries to catch a yellow, flying frisbee.

Generation

0—A
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' Image Captioning (Paragraph)
Caption: There is a white dog lying on a grass field. There are a
lot of leaves on the grass field. There is a chain-link fence next to
| the dog. There is a red frisbee under the dog’s left-front paw.

\

Image captioning

| Image Captioning (Single Sentence)
Caption: A dog tries to catch a yellow, flying frisbee.

* Inputs:

* Image

* Pre-trained image feature extractor (optional): A pre-trained neural network that can

extract meaningful features from images, such as CNN.
» Outputs: Textual captions: Single Sentence or Paragraph that accurately describe the
content of the input images, capturing objects, actions, relationships, and overall context.
» Task: To automatically generate natural language descriptions of images. This involves:
(1) Understanding the visual content of the image (objects, actions, relationships). (2)
Encoding this information into a meaningful representation. (3) Decoding this representation
into a coherent, grammatically correct, and informative sentence or phrase.
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In the past...
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Meshes Memory Transformer

A baseball player is
throwing a ball to
another player.

Decoder
Layer N

Decoder
Layer 2
Decoder
Layer 1

N Memory-Augmented Encoding ; Meshed Decoding
-------------------- ’ R e [Cornia CVPR 2020]

O O O O S S R O O S S R e e e e e e e e

I
1
1
1
I
1
1
1
1
I
1
1
1
1
I
1
|
1
1
I
1
I
1
A



L
W

NXx

F 3

- J

Image

Encoder m

e ]

{ Feed Forward ]

!

NX

[

AN %

[ Bi Self-Att ]

A

rF /

Text
Encoder

it [CLS] + D.ﬂ

AN S

Image-grounded
Text encoder “IEncode] +l:n

LM

3

ol
TN

~

[ Feed Forward

)

F 3

b

-

=[ Cross Attention ]

-

oy b

[ Causal Self-Att

)

F

-

J

Image-grounded

Text decoder “[Decode] + :Iu

T
‘\( “a little girl holding a kitten next to a blue fence” /v
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Unimodal encoder is trained with an image-text contrastive (ITC) loss to align the vision and language representations
Image-grounded text encoder uses additional cross-attention layers to model vision-language interactions and is

trained with an image-text matching (ITM) loss to distinguish between positive and negative image-text pairs.

Image-grounded text decoder replaces the bi-directional self-attention layers with causal self-attention layers and

shares the same cross-attention layers and feed forward networks as the encoder. The decoder is trained with a
language modeling (LM) loss to generate captions given images.

[Li et al, BLIP: Bootstrapping Language-lmage Pre-training for Unified Vision-Language Understanding and Generation, ICML 2022] 83



Vision-and-Language
Representation Learning

Vision-to-Language
Generative Learning

%

Bootstrapping Pre-trained
Image Models

Bootstrapping Pre-trained

i Encoder Querying Transformer
: Large Language Models (LLMs)

Image Q-Former Language [l

B Model Write a romantic message

\ X x X that goes along this photo.
-
! Love is like a sunset, it’s

|
0O0-00] Text B hard to see it coming but
Queries ! when it does it's so beautiful.

X
Iy
I
X

[Li et al, BLIP-2, ICML 2023]



Multimodal tasks (=Vision and Language Tasks)

Multimodal Classification

Image-Text Retrieval

Visual Grounding

Image Captioning
Visual Question Answering and Visual Reasoning

Text-to-image Generation
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VQA and Visual Reasoning

Q: What is the dog holding with its paws?

Visual Question Answering
A: Frisbee.

Visual Reasoning
Q: Is the dog in the air AND is the frisbee in the air?
A: Yes

Generation

0—A
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VQA and Visual Reasoning

Visual Question Answering
Q: What is the dog holding with its paws?
A: Frisbee.

 Input: An image-question pair

« Output: In multiple-choice setting: A label
corresponding to the correct answer among pre-
defined choices. In open-ended setting: A free-form
natural language answer based on the image and
question.

» Task: Answer questions about images. (Most VQA
models treat as a classification problem with pre-
defined answers)

Visual Reasoning
Q: Is the dog in the air AND is the frisbee in the air?
A: Yes

* Output: Varies depending on the task:
* VQA: Answers to questions about the image.
» Matching: True/False for whether the text is true
about the image(s).
« Entailment: Prediction of whether the image
semantically entails the text.
» Sub-question: Answers to the sub-questions
related to perception.
» Task: Performs various reasoning tasks on images.
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In the past...

4096 output units from last hidden layer 1024
(VGGNet, Normalized)
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“How many horses are in this image?”
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VILT

Image Text Matching Masked Language Modeling Word Patch Alignment
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[Kim et al, ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision, ICML 2021]



Vision-and-Language
Representation Learning

Vision-to-Language
Generative Learning

%

Bootstrapping Pre-trained
Image Models

Bootstrapping Pre-trained

i Encoder Querying Transformer
: Large Language Models (LLMs)

Image Q-Former Language [l

B Model Write a romantic message

\ X x X that goes along this photo.
-
! Love is like a sunset, it’s

|
0O0-00] Text B hard to see it coming but
Queries ! when it does it's so beautiful.

X
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[Li et al, BLIP-2, ICML 2023]



Multimodal tasks (=Vision and Language Tasks)

Multimodal Classification

Image-Text Retrieval

Visual Grounding

Image Captioning

Visual Question Answering and Visual Reasoning

Text-to-image Generation
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Pretraining and Downstream

OD, CNN, ViT,
Patch Embedding

Image encoder

A dog lying on
the ggraZS r%ext BERT, RoBERTAa,

i Word Embedding
to a frisbee

Text encoder

Pre-training
Objectives
Merged Attention —
g . / Decoder
Co-attention/ (Gotional)
Dot-product P _
Multimodal Fusion Downstream
Tasks

O Masked Language Modeling
O Masked Image Modeling
O Image-Text Matching
LO Image-Text Contrastive Learning

-

O Visual Question Answering
O Image Captioning
O Image-Text Retrieval

O Phrase Grounding
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Leveraging LLMs



ChatGPT v G
Estimate the number of people in the image

QP 2 < 22>

By counting roughly row by row, it looks like there are about 80-90 people in

the image. My closer estimate is around 85 people.

Generate a similar image with double the amount
of people

What do you see in the image?

The image shows a large group of people gathered outdoors on a grassy

area. They are standing and sitting close together, smiling, and raising their

hands in the air, giving a celebratory or group photo vibe. The setting
appears casual and friendly, possibly for an event like a workshop, summer

school, team-building day, or community gathering. In the background,

Generate a bounding box around the tree of the
image



LLMs
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LLMs
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Leveraging LLMs
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MLLMs (VLMs)
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MLLMs (VLMs)

A typical MLLMs Architecture:

Text inputs are tokenized

Image inputs are processed through a vision encoder
and projector

Both modalities are mapped into a shared embedding
space before being processed by the LLM

LLM generates output tokens as the final result.
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Figure 1. LLaVA network architecture.
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