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What is Multimodal Learning?



Multimodal

Dictonary definition…

Multimodal: having or involving several modes or modalities

Research-oriented definition…

Multimodal is the scientific study of 

heterogenous and interconnected data 

Connected + Interacting



What is a modality?

Modality refers to the way in which something expressed or perceived.
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Heterogeneous Modalities

Information present in different modalities will often show 

diverse qualities, structures and representations
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Connected 

[Slide from Louis-Philippe Morency, MMML]



Interacting

[Slide from Louis-Philippe Morency, MMML]



Multimodal

Multimodal is the scientific study of 

heterogenous and interconnected data 

Connected + Interacting



Multimodal Learning

Multimodal (machine) Learning is the study of 

computer algorithms that integrate and process data 

from multiple modalities, such as images, text, 

audio, or videos.



Applications

Autonomous Driving

Visual Question Answering

“a cute cat in Copenhagen”

Text-to-Image Generation

RoboticsHealthcare

Cross-modal retrieval



Why Multimodal Learning?

Humans explore the world through diverse senses: sight, sound, touch, and scent.

Human perception is 
inherently multimodal



Multimodal Learning framework

Multimodal Learning
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Background
(disclaimer)
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Image Recognition

cat

IMAGE CLASSIFICATION OBJECT DETECTION

IMAGE SEGMENTATION
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Transformers and Attention

[Slides from Illustrated Transformer]
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VIT (Vision Transformer)



Overview

A. Tutorial: Core Multimodal Learning Paradigms
• Representation Learning (fusion-based, joint learning, cross-modal 

retrieval, etc) 

• Alignment (semantic and temporal, visual grounding)
• Generation (Image captioning, text-to-image, text-to-speech, VQA)

• Leveraging Large Language Models

B. Past and Ongoing Research on Multimodal Learning
• Cross-modal retrieval [CVPR 2022, CVPR 2019, Submitted 2025]  

• Image generation and editing [CVPR-W 2025, CVPR-W 2024, SCIA 2025]
• Test-time scaling and augmentation [WIP… 2025]



Multimodal learning paradigms

REPRESENTATION: Learning representations that 

reflect cross-modal interactions between individual 

elements, across different modalities

ALIGNMENT: Identifying and modeling cross-modal 

connections between all elements of multiple modalities, 

building from the data structure

GENERATION: Learning a generative process to produce 

raw modalities that reflects cross-modal interactions, 

structure and coherence



Multimodal Representation Learning

Definition: Learning representations that reflect cross-modal interactions between 

individual elements, across different modalities.

Fusion

• modalities > representations

• joint representation

• Multimodal classification and prediction 

Coordination

• modalities = representations

• multimodally-contextualized representations

• Cross-modal retrieval, zero-shot capabilities



Multimodal Alignment

Definition: Identifying and modeling cross-modal connections between 

all elements of multiple modalities, building from the data structure

Semantic alignment Temporal alignment



Generation
Definition: Learning a generative process to produce raw modalities that reflects cross-
modal interactions, structure and coherence
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Multimodal tasks (=Vision and Language Tasks)

• Multimodal Classification

• Image-Text Retrieval

• Visual Grounding

• Visual Question Answering and Visual Reasoning

• Image Captioning

• Text-to-image Generation
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Multimodal tasks (=Vision and Language Tasks)

• Multimodal Classification 

• Image-Text Retrieval

• Visual Grounding

• Visual Question Answering and Visual Reasoning

• Image Captioning

• Text-to-image Generation
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Multimodal Classification
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Multimodal Classification

1) Where to fuse?

2) How to fuse?
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Multimodal Classification
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Multimodal Classification
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Video Understanding

[Simonyan and Zisserman, “Two-stream convolutional networks for action recognition in videos”, NeurIPS 2014]
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Look, Listen and Learn (= AudioVisual Classification)

[Arandjelovic and Zisserman, ICCV 2017]
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Multimodal Bottleneck Transformer

[Nagrani et al, NeurIPS 2022]
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Multimodal Bottleneck Transformer

[Nagrani et al, NeurIPS 2022]
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Multimodal Bottleneck Transformer

[Nagrani et al, NeurIPS 2022]
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How to fuse? Concat and FC

[Figures from Awan ECCV 2024] 
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How to fuse? Concat and FC

[Figures from Awan ECCV 2024] 
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Multimodal tasks (=Vision and Language Tasks)

• Multimodal Classification

• Image-Text Retrieval

• Visual Grounding

• Visual Question Answering and Visual Reasoning

• Image Captioning

• Text-to-image Generation
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Image-text retrieval
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Image-text retrieval

Coordination



40

Image-text retrieval

• Inputs: Images and Text
• Outputs:

• Relevant images: When a text query is given, the system returns a ranked list of images most relevant 
to the text.

• Relevant text: When an image query is given, the system returns a ranked list of text descriptions or 
captions that best describe the image.

• Tasks:
• Image-to-text retrieval: Given an image as input, retrieve text descriptions or captions that 

accurately describe its content.
• Text-to-image retrieval: Given a text query, retrieve images that visually match the concepts and 

entities mentioned in the text.



CLIP
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Self-Supervised Learning
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Build methods that learn from ”raw” data
no annotations required



Self-Supervised Learning
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Self-Supervised Learning
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• Unsupervised Learning: Model isn’t told what to 
predict. Older terminology, not used as much today. 

• Self-Supervised Learning: Model is trained to predict 
some naturally occurring signal in the raw data rather 
than human annotations.

Let’s build methods that learn from ”raw” data: no annotations required



Self-Supervised Learning
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• Unsupervised Learning: Model isn’t told what to 
predict. Older terminology, not used as much today. 

• Self-Supervised Learning: Model is trained to predict 
some naturally occurring signal in the raw data rather 
than human annotations.

Let’s build methods that learn from ”raw” data: no annotations required



Self-Supervised Learning
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2 step process: First Pretext task, Then downstream task 



Pretext tasks
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Contrastive Learning
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Contrastive Learning
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Contrastive Learning
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